Typical visual unfamiliar face individuation in left and right mesial temporal epilepsy

Angélique Volfarta,b, Jacques Jonasa,c, Louis Maillarda,c, Thomas Busignyb, Bruno Rossiona,b,c,1,*, Hélène Brissarta,c,1

a Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
b Université Catholique de Louvain, Institute of Research in Psychological Science, Louvain-La-Neuve, Belgium
c Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France

1. Introduction

Face identity recognition is critical for social interactions in the human species and constitutes one of the most impressive functions of the adult human brain. Unfortunately, face identity recognition is also frequently affected in a variety of neurological conditions, e.g. following acquired brain damage (Benton and Van Allen, 1972; Valentine et al., 2006; Barton, 2008), surgery for temporal glioma (Papagno et al., 2017), Alzheimer’s disease (Tippett et al., 2003; Pal et al., 2019), fronto-temporal semantic dementia (Luzzi et al., 2017; Pozueta et al., 2019), or temporal lobe epilepsy (Seidenberg et al., 2002; Drane et al., 2013). Recognizing the identity of familiar people based on their faces requires first and foremost to decode the idiosyncratic visual features of these faces (i.e. face individuation). Efficient face individuation is often required when we first encounter people or when they have not yet been encoded in long-term memory, i.e. when they are unfamiliar. Since most human societies are characterized by the presence of numerous individuals and a tendency to change the number of individuals over time, visual individuation of unfamiliar faces occurs frequently and is key to our social interactions (Rossion, 2018).

In neurotypical individuals, the neural basis of visual face individuation has been primarily investigated with functional MRI (fMRI). In...
particular, fMRI-adaptation studies have found face individuation effects in pre-defined face-selective regions of the posterior ventral occipito-temporal cortex (VOTC) such as the inferior occipital gyrus (‘Occipital Face Area’) and the middle fusiform gyrus (‘Fusiform Face Area’) (Gauthier et al., 2000; Schiltz et al., 2006; Davies-Thompson et al., 2009; Ewbank et al., 2013; Fox et al., 2013; Hermann et al., 2017; Hughes et al., 2019; Rostalski et al., 2019). These studies usually use pictures of unfamiliar faces to rule out the automatic involvement of affective and semantic memory processes, as well as name retrieval. In contrast, the processing of familiar (i.e. famous and personally familiar) faces has been consistently shown to involve more anterior regions of the VOTC, such as the anterior and medial temporal regions (Sergent et al., 1992; Gorno-Tempini et al., 1998; Leveroni et al., 2000; Gorno-Tempini and Price, 2001; Elgren et al., 2006; Gobbin and Haxby, 2007; Natu and O’Toole, 2011; Sugiuara et al., 2011; Von Der Heide et al., 2013; Duchaine and Yovel, 2015; Ramon et al., 2015, Rice et al., 2018b), in line with episodic, semantic and emotional contents evoked by familiar faces (Brambati et al., 2010; Sugiuara et al., 2011; Ross and Olson, 2012).

Mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy referred for epilepsy surgery (Schuele and Lüders, 2008; Spencer and Huh, 2008; Tatum, 2012; see also Ladino et al., 2014). Intracranial electroencephalographic (iEEG) recordings have shown that MTLE frequently affects the temporal pole, the amygdala, the head and body of the hippocampus, the rhinal cortex, and the ventral anterior temporal cortex (including the anterior parts of the fusiform and inferior temporal gyri) (Maillard et al., 2004). These structures are typically involved in anterior temporal lobectomy, one of the most frequent surgical procedure in refractory MTLE (Brotis et al., 2019). Several studies have shown that patients with MTLE are impaired at recognizing familiar faces (Seidenberg et al., 2002; Viskontas et al., 2002; Gloser et al., 2003; Griffith et al., 2006). More precisely, left-sided MTLE has been more consistently related to difficulties at naming famous faces, while right-sided MTLE has been frequently linked to difficulties at judging familiarity, or providing semantic information about a face (Gainotti, 2007; Drane et al., 2008, 2013). A similar pattern of famous face identification difficulties has also been found in MTLE patients following ATL resection (Glosser et al., 2003; Drane et al., 2008, 2013; Lambon Ralph et al., 2012, Rice et al., 2018a). Additionally, these patients exhibit difficulties at explicitly encoding and subsequently recognizing pictures of unfamiliar faces, regardless of the epileptogenic focus side (Milner, 1968; Chiaravalloti and Glosser, 2004).

The extent to which famous face recognition difficulties in MTLE can be attributed to the process of visual individuation of faces, independently of general explicit learning and semantic memory processes, remains unknown. Clarifying this issue is important both for clinical and fundamental research. From a clinical standpoint, a comprehensive view of the neuropsychological performance of epileptic patients before epilepsy surgery is critical to predict the neurocognitive outcome after surgery (Potter et al., 2009; Sherman et al., 2011; Helmstaedter, 2013). Indeed, post-operative cognitive outcome depends, among other variables, on the relationship between the location of the epileptogenic zone (i.e. the region to be resected to cure the patient) and the pre-operative neuropsychological profile. According to the model of functional adequacy, the postoperative decline is expected to be high when there is adequacy between the brain region planned to be resected and high pre-operative performance on the cognitive functions supported by this region (Chelune, 1995; Helmstaedter, 2004). At the level of fundamental research, there is increasing evidence for limitations of animal models, in particular the macaque brain, to understand the neural mechanisms of human face (identity) recognition (Rossion and Taubert, 2019; Griffin, 2020). In this context, iEEG recordings of face processing in human epileptic patients may become increasingly informative (e.g. Allison et al., 1999; Davidesco et al., 2014; Jonas et al., 2016; see Rossion et al., 2018 for review). Therefore, a comprehensive view of face recognition performance in these patients is needed to validate the results obtained with iEEG recordings. This issue of potential deficits in visual individuation of faces in MTLE patients remains unsolved, mainly because very few studies have assessed face individuation with unfamiliar faces in these patients (Hermann et al., 1997; Seidenberg et al., 1998; Glosser et al., 2003; Chiaravalloti and Glosser, 2004; Griffith et al., 2006), and these studies have used only a single test (most often the Benton Facial Recognition Test, BFRT, Benton and Van Allen, 1968). While these studies found that both left and right MTLE patients performed in the normal range at this test, with sometimes a trend towards higher scores for left MTLE patients, they never recorded response times (RT) at this task, an important variable to consider in individual face matching tasks (Delvenne et al., 2004; Rossion and Michel, 2018).

In the present study, we went well beyond the state-of-the-art by testing 42 MTLE patients and their matched controls on a series of individuation tasks with unfamiliar faces and control visual stimuli and by reporting both accuracy and response times. The entire cohort of participants was also tested with a face detection task, face and non-face explicit learning tasks, and a famous face recognition and naming task, in order to provide a comprehensive overview of their face recognition performance.

2. Materials and methods

2.1. Participants

Forty-three consecutive pre-surgical patients with refractory MTLE were prospectively enrolled between 2013 and 2017 at the University Hospital of Nancy. The inclusion criteria were: (1) age above 18 years; (2) left or right MTLE as assessed by non-invasive examinations (structural MRI, EEG-video, positron emission tomography, single photon emission computed tomography) for all patients and stereotaxic-EEG (SEEG) for 24 out of 42 patients (when non-invasive examinations were inconclusive about the location of the epileptogenic focus); (3) normal basic visual functions (as measured by the Visual Object and Space Perception battery).

Among the 43 patients screened, one patient was later excluded because of insufficient data about the location of the epileptic focus. Therefore, 42 patients were included in the subsequent analyses (21 males, 21 females; mean age 37.05 ± 11.68). Thirty-nine patients were right-handed (99%) and three patients were left-handed (7%) as measured by the Edinburgh Handedness Inventory (Oldfield, 1971). All but 2 (left) MTLE patients had their intellectual efficiency assessed through the WAIS-R or WAIS-IV (Wechsler Adult Intelligence Scale) and showed a normal IQ (~70). All patients gave written informed consent and the study (ATENA-F, trial N° 2013-A00515-40, ClinicalTrials.gov identifier NCT02888925) was approved by the local ethical committee.
Two groups of patients were distinguished according to the lateralization of the epileptogenic focus: a left MTLE group (17 patients, 9 females; mean age 36.41 ± 12.49) and a right MTLE group (25 patients, 12 females; mean age 37.48 ± 11.34). The side of the epileptogenic focus was assessed by non-invasive examinations (structural MRI, EEG-video, positron emission tomography, single photon emission computed tomography) and, when available, SEEG recordings (24/42 patients). The two patient groups were not statistically different on gender, age at inclusion, handedness, educational level, age at epilepsy onset, duration of epilepsy, number of antiepileptic drugs, structural status of the hippocampus (presence or not of hippocampal sclerosis), or total IQ (Table 1). However, left MTLE patients were significantly faster in processing speed (as measured by the Coding test from the WAIS) than right MTLE patients (Table 1).

Patients were matched individually to normal controls (NC) on age range (±5 years), gender, and level of education (<12, 12 to 14 or >14 academic years). Of these 42 NC, 37 were included in the present protocol (30 female and 7 male controls) and 5 were controls from a previous single-case study (Jonas et al., 2018) who were tested with the same tasks as in the present study. We constituted two NC groups: the left NC group matched to left MTLE patients (17 controls, 9 females; mean age 35.88 ± 12.44), and the right NC group matched to right MTLE patients (25 controls, 12 females; mean age 37.12 ± 11.92). None of the control participants had a history of neurological or psychiatric disease, drug or alcohol abuse, nor did they have cognitive complaints. All NC gave written consent before their inclusion and received financial compensation for their participation in the study.

2.2. Neuropsychological tests

2.2.1. General procedure

Participants were assessed with a set of seven behavioral experiments. The order of administration was the same for each participant: (1) the electronic version of the Benton Face Recognition Test-computerized (BFRT-c); (2) Old/New face recognition task; (3) Old/New recognition task with birds; (4) Face and ear delayed matching task with upright and inverted orientations; (5) Mooney face test; (6) Famous face identification test (CELEB); and (7) Cambridge Face Memory Test (CFMT). Testing lasted for approximately 2 h.

The behavioral tasks were created and tested using E-prime 1.1, except for the CFMT test, running in Java, and the CELEB task running with its own software (https://ipsp.ucl.ac.be/recherche/projets/Celeb/setup.exe). Participants were seated in front of a computer screen, at a distance of about 50 cm. In all tests but the BFRT-c and CELEB, participants had to respond by pressing a button on the keyboard. In the BFRT-c, participants had to respond by clicking with the mouse on-screen images. In the CELEB, the experimenter was responsible for pressing a button on the keyboard when the participant correctly named the famous face and for writing down semantic information when the name was not automatically retrieved by the participant.

2.2.2. Face detection

Mooney face test. This test assesses the ability to categorize a visual stimulus as a “face” without being able to rely on local features (i.e. requiring to perceive the stimulus as a global configuration; Moore and Cavanagh, 1998; Rossion et al., 2011). The stimuli and procedure were the same as those used in experiment 16 of Busigny et al. (2010).

Stimuli. Eighty Mooney faces (two-tone, thresholded, black and white) were selected from the dataset created by Schurger and colleagues (http://www.princeton.edu/artofsense/gallery/view.php%3Fid=77.html) and based on Mooney’s original stimuli (Mooney, 1957). When a Mooney face is presented upside-down, the face is usually not perceived.

Procedure. Mooney faces were individually presented upright and upside-down in the middle of the screen. They were randomly displayed in two blocks of 80 trials. The subject had to decide whether the image depicted a face or not. We considered a correct response when participants pressed the button “yes” for upright Mooney faces (80 trials), and “no” for upside-down Mooney faces (80 trials). Every response was followed by the apparition of a central cross (300 ms) and a gray screen (300 ms).

One control participant (matched with a left MTLE patient) was not tested with this task because of technical issues.

2.2.3. Face and non-face individuation

Benton Facial Recognition Test-computerized (BFRT-c). This test, developed by Benton and Van Allen (1968), is the oldest unfamiliar face matching test in neuropsychology, used in numerous clinical and experimental studies. It requires to match simultaneously presented pictures of unfamiliar faces, against distractor faces. It was performed in a computerized version (Rossion and Michel, 2018).

Stimuli. As in the original test, stimuli were grayscale male or female face photographs with neutral expressions and unfamiliar to the participants.

Procedure. A full-front target was always presented in the upper part of the screen with six probes organized in two rows below it. Participants were instructed to match as fast as possible the face at the top of the screen to the face(s) presented among distractors. The experiment was composed of 22 trials split into two parts (6 trials in Part 1 and 16 in Part 2). In Part 1, targets and probes were all full-front stimuli taken under the same lighting conditions, and participants were instructed to match the target face with the same identical face presented among five distractors. In Part 2, targets were full-front while probes were pictures taken under different lighting conditions (8 items, lighting direction or LD items) and head orientations (8 items, head rotation or HR items) and participants were instructed to match the target face to 3 different exemplars of the same face among 3 distractors. Each trial was separated

Table 1

Demographic and clinical characteristics of MTLE patients. Values are shown as mean ± standard deviation or as the number of patients per category. Independent t-tests, Mann-Whitney U test, and chi-square tests were performed to compare groups: the left NC group matched to left MTLE patients (17 controls, 9 females) and the right NC group matched to right MTLE patients (25 controls, 12 females). Values in bold are significant at p < .05.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Left MTLE (n=17)</th>
<th>Right MTLE (n=25)</th>
<th>Statistical comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (N)</td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>13</td>
<td>χ²<.009, p=.753</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>12</td>
<td>d_Cramer = .049</td>
</tr>
<tr>
<td>Age at inclusion (years)</td>
<td>36.41 ± 12.49</td>
<td>37.48 ± 11.34</td>
<td>t<–.288, p=.775</td>
</tr>
<tr>
<td></td>
<td>12.49</td>
<td>11.34</td>
<td></td>
</tr>
<tr>
<td>Handedness (N left/right)</td>
<td>2/15</td>
<td>1/24</td>
<td>d_Cramer = .125</td>
</tr>
<tr>
<td></td>
<td>1/24</td>
<td>2/15</td>
<td></td>
</tr>
<tr>
<td>Educational Level (N)</td>
<td>< 12</td>
<td>12-14</td>
<td>χ²=2.293, p=.318</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>d_Cramer = .234</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Age at epilepsy onset (years)</td>
<td>19.88 ± 14.56</td>
<td>U=181, p=.419</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.65</td>
<td>9.95</td>
<td>d_Cramer = .251</td>
</tr>
<tr>
<td>Duration of epilepsy (years)</td>
<td>16.53 ± 22.92</td>
<td>U=157, p=.155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.8</td>
<td>13.94</td>
<td>d_Cramer = .450</td>
</tr>
<tr>
<td>Number of anti-epileptic drugs (N)</td>
<td>2.18 ± 2.28</td>
<td>U=185.5, p=.440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.13</td>
<td>0.89</td>
<td>d_Cramer = .215</td>
</tr>
<tr>
<td>Presence of hippocampal sclerosis (N)</td>
<td>7/10</td>
<td>13/12</td>
<td>χ²=0.475, p=.491</td>
</tr>
<tr>
<td></td>
<td>7/10</td>
<td>13/12</td>
<td>d_Cramer = .106</td>
</tr>
<tr>
<td>Total IQ</td>
<td>100.13 ± 90.28</td>
<td>U=126, p=.085</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.87</td>
<td>11.39</td>
<td>d_Cramer = .565</td>
</tr>
<tr>
<td>Processing speed (percentile)</td>
<td>48.2 ± 27.4</td>
<td>U=117, p=.047</td>
<td></td>
</tr>
<tr>
<td>Coding test</td>
<td>32.1</td>
<td>23.17</td>
<td>d_Cramer = .816</td>
</tr>
</tbody>
</table>
from the following one by a blank interval of 500 ms. Accuracy was scored on a total of 54, and the total time taken by participants to complete the test was measured in seconds (Rossion and Michel, 2018).

Cambridge Face Memory Test (CFMT). The CFMT was originally developed by Duchaine and Nakayama (2006) to evaluate face identity recognition difficulties of developmental origin and has become one of the most widely used tests in the literature. It requires to explicitly encode pictures of six individual faces that have to be matched to pictures of the same individuals, against distractor faces. The stimuli and procedure used here were the same as those used in Duchaine and Nakayama (2006).

Stimuli. The stimuli were 52 faces of young men with cropped hair and neutral expressions taken under different viewpoints and lightings. Six individuals were designated as targets (with 12 images for each target face) while the other 46 individuals were used as distractors.

Procedure. The CFMT starts with a brief practice (3 trials) followed by a learning step in which participants are asked to learn six unfamiliar target faces. Each target face is first presented under three different viewpoints and participants have to subsequently recognize it among two distractors (6 target faces x 3 trials each, i.e. 18 trials). In this first step, target faces in the forced-choice task are identical to the studied items. In a second step, participants are asked to perform the same task with novel images of the target faces in which viewpoint and lighting conditions are different from the learning step (30 trials). In the last step, participants have to perform the task while Gaussian noise is added on target and distractor faces to obscure facial features (24 trials). Total accuracy on the CFMT is scored on 72. Note that three right MTLE patients were not tested with this task because of time constraints.

Face and car delayed matching task with upright and inverted orientations. This task also requires matching individual face and non-face items against a distractor, across orientation changes, and with a brief delay between the presentation of the stimuli to match. The stimuli and procedure are identical to experiment 4 in Busigny and Rossion (2010).

Stimuli. One full-front and one 3/4 profile grayscale photographs of 36 individuals (18 females) and 36 cars were used. The target picture was always a full-front picture, and the probe a left 3/4 profile picture.

Procedure. Each trial began with a white screen (1000 ms), followed by the target (2000 ms) and a blank interval (1000 ms). After this interval, two 3/4 profile probes were presented. Participants were instructed to find the probe that corresponded to the previously shown target. Each trial was presented both at upright and upside-down orientations. In total, the experiment consisted of 144 trials (36 per condition and orientation). As in Busigny and Rossion (2010), an index of inversion effect was computed to quantify the performance decrease related to inversion by combining both accuracy and correct response times. This was done by first calculating the inverse efficiency, i.e. the average response times of the correct trials divided by accuracy in each condition (face upright, face inverted, car upright, and car inverted). The index of inversion effect for faces and cars was then calculated using the following formula: (Inverse efficiency Upright - Inverse efficiency Inverted)/(Inverse efficiency Upright + Inverse efficiency Inverted).

2.2.4. Old/New individual recognition tasks with face and non-face items

These tasks evaluate the ability to encode a series of individual faces or birds in a separate test, and then to recognize these items against distractors in a subsequent recognition stage.

Old/New faces. The stimuli and procedure was identical to experiment 3 in Busigny et al. (2010).

Stimuli. Stimuli were 60 color uncropped unfamiliar face pictures (30 females, 30 males). Thirty faces were selected as targets, while the 30 other faces were used as distractors (matched with the target in gender, hairstyle, and skin color).

Procedure. Participants were first presented with each of the 30 target faces for 4 seconds and were asked to explicitly learn them. Next, in a forced-choice recognition task, participants were presented with 30 pairs of faces (≈ 30 trials). For each pair, one face had been learned during the first step while the other face was a similar-looking distractor. Participants were instructed to select the learned face.

Old/New birds. The procedure was the same as for the Old/New faces test except that faces were replaced by images of birds. Birds' images were presented in grayscale to avoid simple matching based on color differences (color varying substantially across birds in the original images). Distractor items were matched with the target in general appearance, all pairs depicting birds from the same bird family, thus making it difficult to rely on a verbal strategy to retrieve the target item.

2.2.5. Famous face recognition and naming

CELAB test. This test assesses (French) famous face identification through naming, retrieval of semantic knowledge, and multiple-choice face-to-name matching (Busigny et al., 2014). An advantage of this test is that it provides two indexes evaluating famous face identification and naming independently. The same procedure as in Busigny et al. (2014) was used.

Stimuli. Sixty photographs of famous faces without external facial cues were presented. They were mostly from the French-speaking community (singers, actors, politicians, etc.). Stimuli were displayed on a black background in the middle of the screen.

Procedure. Each famous face was displayed for 30 seconds and the participant had to name the person (naming step). If naming was correct, the next face was presented; if not, the subject performed 2 additional steps on this face (description and designation steps). First, the subject had 30 additional seconds to give as much information as possible, i.e. occupation, age, nationality, etc. (description step). Second, after these 30 seconds, the participant was provided with a multiple-choice and asked to find the correct name among four distractors (designation step). A face was considered to be correctly identified if the participant correctly named the face (naming step) or if the face was well-described and correctly-designated. At the end of the task, a final step was performed for all faces that were not correctly identified (knowledge step). Here, the experimenter provided the correct name and asked the participants if they know this person. If the person was not known, it was removed from the calculation of indexes.

Scores and indexes. Three scores were computed. The denomination score was the number of correctly-named faces. The recognition score represented the total of recognized faces, i.e. the number of correctly-named faces plus the number of faces correctly-described and correctly-designated. The knowledge score was the total of famous faces that were really known to participants. Based on these three scores, two indexes were computed. The Facial Recognition Index (FRI), representing the ability to recognize famous people from their face, corresponded to the recognition score divided by the knowledge score (multiplied by 100). The Name Access Index (NAI), representing the ability to retrieve a proper name based on a face, corresponded to the denomination score divided by the recognition score (multiplied by 100) (Busigny et al., 2014). Response times were recorded for the naming step only (correctly-named faces).

2.3. Statistical analysis

Statistical analyses were conducted using the SPSS software (IBM SPSS Statistics, Version 20.0: Armonk, NY: IBM Corp.). All tests were two-sided, and the alpha-level was set at p < .05. Analyses were carried out using chi-square tests for categorical variables and two independent samples t-tests or non-parametric Mann-Whitney U-tests for continuous variables, depending on whether the data were or were not normally distributed (as assessed by the Shapiro-Wilk test). Estimation of effect size is reported using Cramer’s V for categorical variables and Cohen’s d for continuous variables.
3. Results

3.1. Group level

The results are summarized in Fig. 1. All data and statistical results are available in Table 2. The following analysis focuses on the comparison of accuracy and correct RT between left and right MTLE patients and their respective NC (Fig. 1, Table 2). Direct comparisons between right and left MTLE patients are also reported (Fig. 1, Table 2).

3.1.1. Face detection

Left and right MTLE patients did not differ in accuracy rates from their respective NC groups at the Mooney face test. Whereas left MTLE patients were not different from their NC in RT, right MTLE patients showed significantly longer RT.

3.1.2. Unfamiliar face and non-face individuation

Left and right MTLE patients did not differ in accuracy at the BFRT-c and CFMT from their respective NC groups. At the delayed matching task with pictures of cars, both patient groups showed normal accuracy performance compared to their NC group. For faces, left MTLE patients performed in the normal range in accuracy. Right MTLE patients had a slightly (i.e. 4%) but significantly lower accuracy at matching upright faces only. However, there was no interaction with stimulus inversion, both patient groups showing normal face inversion indexes.

Right MTLE patients were significantly slower than their NC group on all measures (BFRT-c, delayed matching task with faces and cars, both orientations). In contrast, left MTLE patients were only slower on the delayed matching task with inverted cars. Interestingly, in both patient groups, RT on the BFRT-c correlated with the Coding test of the WAIS assessing visuospatial processing speed ($r = -0.56$, $p = .02$, and $r = -0.51$, $p = .01$, for left and right MTLE groups respectively) (Tables 3 and 4).

3.1.3. Old/New recognition tasks

Both patient groups had lower accuracy than their NC on the old/new tasks, both with face and bird stimuli. Right MTLE patients were also significantly slower than their NC on these two tasks while left MTLE were unimpaired (Table 2).

3.1.4. Famous face recognition and naming

Right MTLE patients showed lower performance than their NC in identifying famous people from their face (FRI, CELEB test) but had no difficulty in naming those that they could identify (NAI, CELEB test). In contrast, left MTLE patients did not differ in identifying famous people from their face but showed lower performance than their NC in naming famous faces. Right and left MTLE did not differ from their respective NC groups in RT on naming (correctly-named famous faces).

3.2. Interim summary

The latter finding that left MTLE patients had difficulties at naming famous faces, while right MTLE patients were impaired at identifying famous persons from their face, is consistent with previous studies (Drane et al., 2008, 2013). Moreover, both left and right MTLE patients were impaired at explicitly learning face and bird images, in line with visual episodic memory deficits in MTLE (Chiaravalloti and Glosser, 2004; Helmstaedter, 2013). However, a novel aspect of the present study is that left and right MTLE patients had no difficulties at individuating pictures of unfamiliar faces (BFRT-c, CFMT, face matching), at least when accuracy only is considered. Right MTLE performed more slowly than NC in all tasks (except at naming famous faces in the CELEB test, after identification). This slowing down was not specific to faces since it was always found for both face and non-face items, without any evidence of a more severe effect for faces. Moreover, right MTLE patients were also significantly slower than the left MTLE patients at the general Coding test.

3.3. Interindividual variability in unfamiliar face and non-face individuation tasks

Although no clear difference was found between patients and controls in unfamiliar face individuation tasks at the group level, there was an increase of interindividual variability in patients as compared to their NC for some of these tasks (BFRT-c, face and car delayed matching task and CFMT), as shown by Levene’s tests. Left and right MTLE patients had more variable accuracy on the delayed matching task with upright cars than their respective NC ($F = 4.175$, $p = .049$, and $F = 4.879$, $p = .032$, respectively). Right MTLE patients also had more variable response times on the BFRT-c ($F = 8.793$, $p = .005$), delayed matching with upright and inverted cars ($F = 7.659$, $p = .008$, and $F = 7.056$, $p = .011$, respectively) and with inverted faces ($F = 5.551$, $p = .023$).
To further understand the nature of this interindividual variability in unfamiliar face and non-face individuation tasks (BFRT-c, CFMT, face and car delayed matching task), we correlated the patients’ performance (accuracy and RT) on these tasks with their demographic and clinical characteristics (all correlations are found in Tables 3 and 4 for left and right MTLE patients respectively). Note that in the following analysis, we did not correct our statistical threshold for multiple comparisons (6 × 13 = 78 comparisons for each patient group) because this led to a highly conservative threshold (FDR-corrected). This analysis should be interpreted with caution because of the weak statistical power due to the small sample of subjects, especially in the left MTLE group. However, we report confidence intervals for each correlation in Tables 3 and 4. In right MTLE patients, duration of epilepsy was significantly and negatively correlated with accuracy at the BFRT-c and delayed matching with upright faces and cars, and inverted cars (Tables 3 and 4). In left MTLE patients, no correlation was found between epilepsy duration and any of these individuation tasks. Total IQ was positively correlated with several scores in both left (delayed matching with faces) and right (BFRT-c, delayed matching with upright faces and inverted cars, face inversion index, CFMT) MTLE patients, indicating that patients with a lower IQ also had lower performance on these tasks.

There were also significant negative correlations of RT in the BFRT-c and CFMT tasks with RT at matching upright faces which were correlated with processing speed, except for the left MTLE patients only (Table 4), indicating that older patients had longer RT. RT in the delayed matching task with faces and cars were not correlated with IQ or processing speed, except for the RT at matching upright faces which were correlated with processing speed in left MTLE patients only.

3.4. Do MTLE patients differ qualitatively from normal controls?

Although no clear difference was found between patients and controls in unfamiliar face individuation tasks at the group level (i.e. at a
Table 3
Correlations in left MTLE patients. Correlations of clinical and demographic variables with the accuracy scores and response times at the face and non-face individuation tasks in left MTLE patients. Pearson r and associated p-values are displayed, as well as 95% confidence intervals. Values in bold are significant at p < .05 (not corrected for multiple comparisons). Acc = accuracy, RT = response time, CI_{95%} = 95% confidence intervals.

<table>
<thead>
<tr>
<th>Correlations in left MTLE patients</th>
<th>Age at inclusion</th>
<th>Age at epilepsy onset</th>
<th>Epilepsy duration</th>
<th>Number of antiepileptic drugs</th>
<th>Total IQ</th>
<th>Processing speed (percentile Coding test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFRT-c</td>
<td>r = 0.169, p = .517 CI<sub>95%</sub> = 0.353/0.651</td>
<td>r = -0.023, p = 0.930 CI<sub>95%</sub> = -0.498/0.463</td>
<td>r = -0.195, p = -0.453 CI<sub>95%</sub> = 0.315/0.618</td>
<td>r = -0.315, p = 0.218 CI<sub>95%</sub> = 0.195/0.691</td>
<td>r = -0.261, p = 0.312 CI<sub>95%</sub> = 0.662/0.290</td>
<td>r = -0.046, p = 0.150 CI<sub>95%</sub> = -0.510/0.514</td>
</tr>
<tr>
<td>RT</td>
<td>r = 0.051, p = -0.846 CI<sub>95%</sub> = 0.239/0.666</td>
<td>r = -0.273, p = -0.234 CI<sub>95%</sub> = -0.685/0.206</td>
<td>r = -0.305, p = 0.861 CI<sub>95%</sub> = -0.515/0.444</td>
<td>r = -0.497, p = 0.042 CI<sub>95%</sub> = -0.804/0.020</td>
<td>r = -0.537, p = 0.020 CI<sub>95%</sub> = -0.832/0.062</td>
<td></td>
</tr>
<tr>
<td>Delayed Matching Task</td>
<td>r = 0.444, p = 0.005 CI<sub>95%</sub> = 0.084 CI<sub>95%</sub> = 0.108/0.455</td>
<td>r = -0.620, p = 0.005 CI<sub>95%</sub> = 0.238/0.444</td>
<td>r = 0.200, p = 0.194 CI<sub>95%</sub> = 0.178/0.517</td>
<td>r = 0.137, p = 0.180 CI<sub>95%</sub> = -0.207/0.437</td>
<td>r = 0.099, p = 0.009 CI<sub>95%</sub> = 0.726/0.726</td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td>r = 0.044, p = .047 CI<sub>95%</sub> = 0.009/0.133</td>
<td>r = -0.806, p = 0.009 CI<sub>95%</sub> = -0.223/0.674</td>
<td>r = -0.557, p = 0.066 CI<sub>95%</sub> = 0.323/0.024</td>
<td>r = -0.577, p = 0.009 CI<sub>95%</sub> = -0.291/0.339</td>
<td>r = -0.603, p = 0.015 CI<sub>95%</sub> = -0.180/0.267</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>r = -0.560, p = -0.009 CI<sub>95%</sub> = -0.612/0.108</td>
<td>r = 0.628, p = 0.009 CI<sub>95%</sub> = 0.264/0.383</td>
<td>r = 0.542, p = 0.009 CI<sub>95%</sub> = 0.652/0.186</td>
<td>r = 0.132, p = 0.009 CI<sub>95%</sub> = -0.270/0.322</td>
<td>r = -0.137, p = 0.009 CI<sub>95%</sub> = -0.125/0.378</td>
<td></td>
</tr>
<tr>
<td>Faces</td>
<td>r = -0.127, p = -0.444 CI<sub>95%</sub> = -0.267/0.573</td>
<td>r = -0.427, p = -0.586 CI<sub>95%</sub> = -0.450/0.510</td>
<td>r = 0.383, p = -0.267 CI<sub>95%</sub> = 0.054/0.321</td>
<td>r = -0.090, p = 0.371 CI<sub>95%</sub> = -0.557/0.304</td>
<td>r = -0.336, p = -0.250 CI<sub>95%</sub> = -0.614/0.216</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>r = 0.119, p = -0.649 CI<sub>95%</sub> = -0.311/0.567</td>
<td>r = 0.263, p = -0.380 CI<sub>95%</sub> = -0.225/0.287</td>
<td>r = -0.225, p = -0.385 CI<sub>95%</sub> = -0.237/0.287</td>
<td>r = -0.425, p = -0.308 CI<sub>95%</sub> = -0.614/0.216</td>
<td>r = -0.273, p = 0.289 CI<sub>95%</sub> = -0.475/0.194</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>r = -0.100, p = -0.702 CI<sub>95%</sub> = -0.383/0.567</td>
<td>r = 0.089, p = 0.792 CI<sub>95%</sub> = -0.249/0.660</td>
<td>r = -0.260, p = -0.975 CI<sub>95%</sub> = -0.487/0.239</td>
<td>r = -0.133, p = -0.313 CI<sub>95%</sub> = -0.658/0.252</td>
<td>r = 0.088, p = 0.280 CI<sub>95%</sub> = -0.111/0.759</td>
<td></td>
</tr>
<tr>
<td>GFMT Total</td>
<td>r = -0.172, p = 0.509 CI<sub>95%</sub> = -0.603/0.336</td>
<td>r = -0.260, p = 0.197 CI<sub>95%</sub> = -0.699/0.180</td>
<td>r = -0.131, p = 0.267 CI<sub>95%</sub> = -0.575/0.303</td>
<td>r = 0.206, p = 0.011 CI<sub>95%</sub> = -0.232/0.376</td>
<td>r = 0.099, p = 0.280 CI<sub>95%</sub> = 0.342/0.175</td>
<td></td>
</tr>
</tbody>
</table>

quantitative level), we explored the possibility that they differ qualitatively (i.e., accuracy or RT pattern across items). We therefore performed an item-by-item analysis on the second part of the BFRT-c (matching the target with its 3 corresponding probes). We focused on the BFRT-c for two main reasons: (1) normative data from 307 participants are available with this test, including mean accuracy and RT for each item (Rossion and Michel, 2018); (2) the BFRT-c is characterized by a large variability in difficulty across items (Rossion and Michel, 2018).

In the normative study of the test (Rossion and Michel, 2018), mean accuracy scores and RT across 307 typical participants were computed for each of the 16 items of the second part of the BFRT-c, ranking the items from the easiest to the most difficult. Here, we followed the same procedure as in Rossion and Michel (2018) and considered the mean accuracy score and mean RT for each item of this second part (n = 16) in both patient and NC groups. Consistent with the results observed in Rossion and Michel (2018) (these results are shown in Figs. 2A and 3A), items with changes in head rotation (HR items) showed higher accuracy scores and lower RT than items with changes in lighting direction (LD items) in both left and right MTLE patients and in their NC (Fig. 2B and C for accuracy; Fig. 3B and C for RT). To statistically assess that the difference between LD and HR items was the same across patients and their matched NC, we calculated two indexes reflecting the difference in accuracy or response times between these two types of items for each participant. We subtracted the mean accuracy score of LD items from the mean accuracy score of HR items and divided it by the mean accuracy of all items. We followed the same principle with RT, but subtracted the mean RT of HR items from the mean RT of LD items, to obtain a positive index. We then compared the accuracy and RT difference indexes of the patients and their NC. No difference was found between the right MTLE patients and their NC (t = -0.780, p = 0.439; RT: t = 1.298, p = 0.202), or between the left MTLE patients and their NC (accuracy: t = -0.454, p = 0.653; RT: t = -0.554, p = 0.584). The same comparison performed between MTLE patients and the 307 participants of the normative data did not reveal any difference between groups (accuracy...
Table 4

Correlations in right MTLE patients. Correlations of clinical and demographic variables with the accuracy scores and response times at the face and non-face individuation tasks in right MTLE patients. Pearson r and associated p-values are displayed, as well as 95% confidence intervals. Values in bold are significant at p < .05 (not corrected for multiple comparisons). Acc = accuracy, RT = response times, CI95% = 95% confidence intervals.

<table>
<thead>
<tr>
<th>Correlations in right MTLE patients</th>
<th>Age at inclusion</th>
<th>Age at epilepsy onset</th>
<th>Epilepsy duration</th>
<th>Number of antiepileptic drugs</th>
<th>Total IQ</th>
<th>Processing speed (percentile Coding test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFRT-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r = 0.245</td>
<td>p = .0349</td>
<td></td>
<td></td>
<td></td>
<td>0.184</td>
<td></td>
</tr>
<tr>
<td>Acc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r = 0.369</td>
<td>p = .1491</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Acc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r = 0.326</td>
<td>p = .1491</td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Acc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFM Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g = 0.316</td>
<td>p = .1491</td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
<td></td>
</tr>
</tbody>
</table>

indexes: t = -0.390, p = .697 and t = 1.350, p = .189 for the comparison of the normative data with left and right MTLE patients, respectively; RT indexes: t = 1.445, p = .149 and t = -0.414, p = .682 for left and right MTLE patients, respectively).

Moreover, mean accuracy scores correlated negatively with mean RT in both left and right MTLE patients (r = -0.760, p < .001, and r = -0.793, p < .001, respectively), as well as in left and right NC (r = -0.864, p < .001, and r = -0.880, p < .001, respectively), indicating that items with the highest accuracy scores were also the ones with the shortest response times (see Figs. 2 and 3), as found in normative data (Rossion and Michel, 2018).

Finally, we calculated the inverse efficiency of each item for both patient and NC groups to take into consideration speed-accuracy trade-offs. This was done by dividing the RT by mean accuracy for each item in each group (Townsend and Ashby, 1978, 1983; see also Bruyer and Brysbaert, 2011). There was a strong positive correlation across items between patients and NC, for both left and right MTLE patients (r = 0.91, p < .001 and r = 0.90, p < .001, respectively), indicating that items that were better succeeded (high accuracy and low RT) in NC were also those that were better succeeded in MTLE patients (Fig. 4A and B). Results of both MTLE patient groups were also similar to the results of the large normative sample of 307 younger participants (Rossion and Michel, 2018) as shown by strong positive correlations between inverse efficiency scores of left MTLE and normative data (r = 0.90, p < .001), and right MTLE and normative data (r = 0.97, p < .001) (Fig. 4C). Altogether, these results show that MTLE patients do not differ qualitatively from normal controls at unfamiliar face individuation.

4. Discussion

The present study is the first to systematically assess a range of face and non-face recognition abilities in patients presenting with left or right MTLE. Our main findings are that: (1) MTLE patients present with famous face identification and learning difficulties, in line with previous...
Fig. 2. Mean accuracy scores per item of the second part of the BFRT-c. Items are ordered from the highest to the lowest score. Light gray represents LD items, dark gray represents HR items. A. Normative data on 307 young adult participants from Rossion and Michel (2018). B. Mean accuracy scores per item in the left MTLE patients and their matched NC. C. Mean accuracy scores per item in the right MTLE patients and in their matched NC.
Fig. 3. Mean response times per item of the second part of the BFRT-c. Items are shown from the fastest to the slowest RT. Light gray represents LD items, dark gray represents HR items. A. Normative data on 307 young adult participants from Rossion and Michel (2018). B. Mean RT per item in the left MTLE patients and their matched NC. C. Mean RT per item in the right MTLE patients and in their matched NC.
4.1. Unfamiliar face individuation is preserved in MTLE patients

The most important and original finding of our study is that at the group level both left and right MTLE patients do not differ in accuracy compared to their NC on unfamiliar face and non-face individuation tasks (BFRT-c, CFMT, and delayed face and car matching task). Importantly, there was no difference in accuracy between patient and NC groups on the two most widely used neuropsychological tests to investigate face recognition in the scientific literature, i.e. the BFRT and CFMT (Benton et al., 1983; Duchaine and Nakayama, 2006). Only a significant 4% decrease in accuracy at matching upright faces was found in right MTLE patients at the delayed matching task. However: (1) this decrease, even if it is significant, remains very small (91.32% of correct responses in right NC compared to 86.79% in right MTLE patients), (2) it may be due to the nature of a task that, contrary to the BFRT-c, requires to hold individual face representations in memory for 1000 ms, and (3) total IQ might play a role in this small decrease, knowing that we found a strong positive correlation between IQ and accuracy at matching upright faces in right MTLE patients and that these patients had a mean IQ 10 points lower than left MTLE patients (even though the difference was not significant).

Although patient and NC groups did not differ on accuracy scores at the group level, some of the scores were correlated across individuals with clinical and demographic characteristics (Tables 3 and 4). In right MTLE patients, both the upright face matching and the BFRT-c accuracy scores were negatively correlated with epilepsy duration, suggesting that a slightly lower performance at these two face individuation tasks in some individuals could be associated with a longer epilepsy duration. More generally, total IQ was positively correlated with several scores in both left (delayed matching with upright and inverted faces) and right (BFRT-c, delayed matching with upright faces and inverted cars, face inversion index, CFMT) MTLE patients, suggesting that their performance may be related to difficulties to understand the instructions of explicit behavioral tasks.

4.2. MTLE patients do not differ qualitatively from normal controls

In the delayed face and car matching task, MTLE patients showed a classical face inversion effect (i.e. lower accuracy and higher RT for inverted faces compared to upright faces) with the same magnitude as their NC (similar index of face inversion effect between MTLE patients and their NC). Face inversion is known to dramatically affect behavioral individuation of faces in neurotypical human adults (Yin, 1969; Freire et al., 2000; see Rossion, 2008 for review) and this effect is abolished in brain-damaged prosopagnosic patients (as reviewed in Busigny and Rossion, 2010). A preserved face inversion effect in left and right MTLE patients therefore provides strong evidence that this clinical population is not qualitatively impaired at unfamiliar face individuation. Moreover, the magnitude of the face inversion effect was higher than for non-face stimuli, as is also observed in neurotypical human adults (Busigny and Rossion, 2010; Rossion and Curran, 2010).

We further explored potential qualitative differences using the BFRT-c data. The normative study of Rossion and Michel (2018) showed higher accuracy and lower RT on HR items than on LD items. However, the well-known prosopagnosic patient PS, although she achieved a borderline score of 39/54 (Busigny and Rossion, 2010), showed almost no advantage for HR items compared to LD items at the BFRT-c (Liu-Shuang et al., 2016; Rossion and Michel, 2018). Importantly, the same profile as in normative data was found here in left and right MTLE patients as well as in their respective NC. Moreover, items that were better performed (high accuracy and low RT) by MTLE patients were also those that were better performed by their respective NC and by the normative population (N = 307, Rossion and Michel, 2018).
4.3. Semantic and episodic memory in MTLE patients

As in previous studies, we found that MTLE patients had lower performance at famous face recognition compared to normal controls (Seidenberg et al., 2002; Viskontas et al., 2002; Glosser et al., 2003; Griffith et al., 2006). Specifically, left MTLE patients were impaired at naming famous faces while right MTLE patients were impaired at explicitly recognizing famous faces (i.e. both by naming and providing semantic information from a face), consistently with previous studies (Drane et al., 2008, 2013). Since the very same patients were not impaired at individuating unfamiliar faces, their famous face recognition deficit does not appear to be due to visual face individuation, but rather to semantic memory impairment. This hypothesis is consistent with the functions of the ventral anterior and polar temporal cortex, which is affected in MTLE (Maillard et al., 2004). Numerous neuroimaging and lesion studies have provided evidence for a strong involvement of the bilateral ventral anterior temporal cortex and temporal pole in semantic processing (Rice et al., 2015, 2018; Hoffman and Lambon Ralph, 2018). In particular, lesion studies (in patients after surgical resection of the anterior temporal lobe or presenting with a neurodegenerative disease such as semantic dementia) found relative differences in semantic performance depending on the side of the lesion (Snowden et al., 2004, 2012; Butler et al., 2009, Rice et al., 2018a). Damage to the left ventral anterior and polar temporal regions has been shown to cause relatively more difficulties with verbal semantic processing (as naming) while damage to the right ventral anterior and polar temporal regions leads to more relative difficulties with non-verbal semantics (as recognizing famous faces). The differential involvement of left and right anterior temporal lobes in semantics is consistent with our results showing greater difficulties at naming famous faces in left MTLE patients and greater difficulties at explicitly recognizing famous faces in right MTLE patients.

Interestingly, we also found that both left and right MTLE patients had lower performance (around 10% less in accuracy compared to NC) at explicitly encoding and retrieving visual items. This decrease in performance affected both face and non-face (birds) items, showing that this impairment was not specific to faces. These results are consistent with well-known visual episodic memory deficits in this population (Helmstaedter, 2013; Brissart et al., 2018; Ono et al., 2019), related to dysfunctions of the hippocampus and rhinal cortex, which are always affected (to a greater or lesser extent) in MTLE. Moreover, the fact that both left and right MTLE patients present with visual learning difficulties is consistent with the view that there is no strict relationship between the lateralization of the epileptogenic focus and the performance at memorizing visual information (Lee et al., 2002; Salig, 2009).

4.4. Response times increase in right MTLE patients

Right MTLE patients showed a general increase of RT in virtually all tasks that were tested in the present study. RT is an important variable to consider in individual face matching tasks, as it may reveal impairments beyond accuracy measures, for instance in patients with prosopagnosia (Davidoff and Landis, 1990; Farah, 1990; Delvenne et al., 2004). However, and importantly, RT increases in right MTLE patients in the present study were not specific to the type of stimuli (increase in RT for face and non-face items) or to the task (increase in RT for detection, individuation, and learning tasks). Right MTLE patients were also slowed down compared to left MTLE patients at a simple visuospatial task, evaluating general processing speed. Specifically for the BFRT-c, the performance on the Coding test was negatively correlated with the RT at this task, suggesting that the slowing down of right MTLE patients at the BFRT-c was partly related to a general slowing down in visuospatial processing speed rather than to difficulties at individuating unfamiliar faces. This is supported by the fact that the Coding test was not correlated with the RT on other face or non-face individuation tasks that require less visuospatial processing compared to the BFRT-c (2 images to explore in the delayed matching task, 3 in the CFMT, as compared to 6 in the BFRT-c).

Overall, our observations suggest that the general increase of RT in right MTLE patients does not reflect impairment at unfamiliar face individuation per se but rather a general slowdown at all visual tasks, related to the right hemispheric lateralization of epilepsy. Cerebral asymmetry in RT in brain-damaged populations has been previously demonstrated (see Benton, 1986). A plausible explanation for this asymmetry relies on the more prominent role of the right hemisphere in sustaining visuospatial attention. According to this hypothesis, the right hemisphere has a crucial role in maintaining directed attention towards a task (Heilman and Van Den Abell, 1979; Mesulam, 1981; Whitehead, 1991; Thiebaut de Schotten et al., 2011), and right-lateralized damage is thus more susceptible to cause attentional deficits (Mesulam, 1981). Consistently, early studies have shown that patients with right-lateralized lesions had increased RT on simple visual reaction tasks (e.g., pressing a button when a light appeared) compared to patients with left-lateralized lesions (Arrigoni and De Renzi, 1964; De Renzi and Faglioni, 1965; see Benton, 1986).

Another possibility to explain the slower RT of right MTLE patients is related to intellectual efficiency. Although the difference was not significant, right MTLE patients exhibited on average a 10 points lower total IQ than left MTLE patients, which could be of importance when understanding instructions of the tasks and responding appropriately to them. This is in line with numerous studies showing a strong association between processing speed and intellectual efficiency and indicating that lower IQ scores are associated with longer response times during simple reaction tasks or choice reaction tasks (Deary et al., 2001; Schweizer, 2001; Jensen, 2006; Sheppard and Vernon, 2008; see also Frischkorn et al., 2019). Hence, the general slowing-down observed in our population of right MTLE patients could be related to an alteration of visuospatial attentional networks or to more general cognitive factors (i.e. as measured by the IQ score; see Table 4) rather than visual face individuation processing per se.

A promising avenue to clarify this issue with MTLE patients in future studies is the use of implicit measures of face individuation, as provided by EEG frequency tagging (Norgia et al., 2015). In particular, sensitive and objective measures of unfamiliar face individuation can be obtained in a few minutes of testing with an oddball paradigm (Liu-Shuang et al., 2014; reviewed in Rossion et al., 2020) showing high test-retest reliability (Dzhelyova et al., 2019) and specific sensitivity to severe impairment in face identity recognition (i.e. prosopagnosia, Liu-Shuang et al., 2016). If the slowing down of right MTLE patients is not specific to visual individuation of faces per se, this population should present with typical frequency-tagged EEG responses in this paradigm.

4.5. The validity of iEEG recordings to understand visual face recognition

Over the last decade, iEEG recordings (either with subdural electrodes in electrocorticography, or with depth intracerebral electrodes in SEEG) in patients with epilepsy have become increasingly used to understand the neural basis of face recognition, and in particular the mechanisms of visual face individuation (Allison et al., 1999; Davideco et al., 2014; Engell and McCarthy, 2014; Ghuman et al., 2014; Jonas et al., 2016; Kadipasaooglou et al., 2016; Hagen et al., 2020; Jacques et al., 2020; Rangarajan et al., 2020). Since iEEG recordings are performed in patients with drug-resistant epilepsy and MTLE is the most frequent focal epilepsy referred for epilepsy surgery (Schuee and Lüders, 2008; Spencer and Hul, 2008; see also Ladino et al., 2014), MTLE patients are the most included patients in iEEG studies. Therefore, it is legitimate to ask whether iEEG recordings in epileptic patients provide a valid model to understand normal face recognition (Rossion et al., 2018). Several sources of evidence provide support for the validity of human iEEG to inform about normal visual face individuation. For example, despite mixed evidence of general decreases of neuroimaging signal in some regions (Riley et al., 2015), MTLE patients appear to show a typical localization of posterior cortical face-selective activations in IMRI
and qualitative performance at individuating unfamiliar faces, suggesting that these patients present with a typical neurofunctional organization of face individuation.

Funding

The work is supported by the University Hospital of Nancy in France, and the first author, AV, is supported by a doctoral grant from the MESRI, also in France.

Declarations of interest

None.

CRediT authorship contribution statement

Angélique Volfart: Data curation, Formal analysis, Methodology, Visualization, Writing - original draft, Writing - review & editing. Jacques Jonas: Conceptualization, Funding acquisition, Investigation, Supervision, Writing - original draft, Writing - review & editing. Bruno Rossion: Conceptualization, Funding acquisition, Supervision, Writing - original draft, Writing - review & editing. Hélène Brissart: Conceptualization, Data curation, Supervision, Writing - original draft.

Acknowledgments

We thank Julie Camper, Mylène Romilly, Marion Beringer, Clémentine Castro, Hélène Romary, Natacha Forthoffer, and Justine David for her help with the item-by-item analysis.

References

Brown, P., Brysbaert, M., 2011. Combining speed and accuracy in cognitive psychology: is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychol. Belg. 51, 5–13.
A. Volfart et al.

